Post-Algebra I, Pre-Geometry Summer Packet	Name
(Concepts expected to be understood upon entering	Algebra I information:
a high-school Geometry course)	Grade Level School
	Teacher

In order to be successful in a Geometry course at the high-school level, a student needs to have a firm grasp of the material covered in Algebra I. This packet is an attempt to highlight the skills obtained in Algebra I that are used *most often* in a Geometry course. During the school year, other Algebra I - based skills that may not be covered in this packet will be necessary for success in a Geometry class, but this packet should serve as a guide to the skills considered most vital.

Part 1: Solving Equations

Solve for the variable in each equation using any method.

1. 3x + 6 = 24	2. ³ / ₄ (d - 3) = 6
3. $\frac{8r+5-3r}{4} = 10$	$4. \frac{6}{w} = -24$
5. 28 = 7(y - 7)	6. 0 = x ² + x
7. 9x ² = 16	8. $x^2 - 7x + 12 = 0$
9. $3x^2 - 6x - 2 = 4 + 5x - 7x^2$	10. $x^2 = 2x + 24$
11. $\frac{1}{2}(10 - 2a) = 2$	124 = 6n - 6

Part 2: Simplifying and Evaluating Expressions

1.	Evaluate f(a,b) = $ab^2 + \frac{1}{2}a - 3ac$ for a = 12, b = -6, c = -4.	2.	Evaluate f(x, y, z) = $2.5x^3 + x^{-2}y - xz$ for x = 4, y = 8, and z = -3.
3.	Simplify: $5x^3y^4 + 7x^2y^4 - 2x^3y^4$	4.	Simplify: (5 <i>y</i> -6) ²

5. Simplify: $(5x^2 - 4y^3)(3x^3 + 6y)$	6. Simplify: $8\sqrt{3} + 3\sqrt{27} - \sqrt{300}$
7. Simplify: $10\sqrt{6} \cdot 2\sqrt{2} \cdot 3\sqrt{3}$	8. Simplify: $2\sqrt{2} \cdot 3\sqrt{3} \cdot 5\sqrt{2} + 4\sqrt{3} \cdot 2\sqrt{3}$
9. Simplify: $(3x^2 - 5y)^2$	10. Simplify: $(8x - 5y)^3$

Part 3: Exponents and Radicals

Simplify the following radical expressions.

1. \sqrt{40}	2. 4\sqrt{24}
3. 6\sqrt{49}	4. $2\sqrt{28} + \sqrt{63}$
5. $6\sqrt{8} - \sqrt{98}$	6. $2\sqrt{10} \ 3\sqrt{6}$
7. $\frac{6\sqrt{48} - 2\sqrt{27}}{\sqrt{12}}$	8. $(2\sqrt{2})^2$
9. $(5\sqrt{7})^2$	10. $(\sqrt{20})^3$

Part 4: Working with Like and Unlike Terms

11. $(6x^2 + 1) + (5x^2 - 4)$	12. $(2x^3 + 11x + 2) - (x^3 - 2x + 7)$
13. $(x^2 - 3x + 3) - (x^2 + x - 1)$	14. $(14-16x) + (10x-5)$
13. $(x - 3x + 3) - (x + x - 1)$	

15. $(8x^3-1) - (20x^3+2x^2-x-5)$	16. $6x - (22x + 3 - 36x^2 + x^3)$
17. $(4x^2 - 15x + 16) + (2x - 20)$	18. $(7x^3 - 2 + x^2 + 13x) - (4x^3 + 10)$

Part 5: Factoring

Factor each expression or equation, if possible. Solve for x if you are working with an equation.

1.	$3x^3 + 15x^2$	2. $x^2 + 7x = -12$
3.	$x^2 - x - 6 = 0$	4. $x^2 - 25$
5.	x ² + 4	6. $2x^2 - 5x = 3$
7.	$3x^2 - 19xy + 20y^2$	8. $16x^2 - 9y^2$
9.	$10x^2 + 17xy + 3y^2$	10. $-4x = 10x^2 - 24x^3$ (careful - there are 3 answers here!)

Part 6: Pythagorean Theorem Use the Pythagorean Theorem to find n. Express n as a radical in simplest form. Show your work

Part 7: Word Problems

A CD player costs \$129.95 with a sales tax rate of 8%. What is the total cost of the CD player?	A car rental agency charges a fee of \$35 per day plus \$.20 for each mile driven. How much will it cost to rent the car for 4 days and drive 730 miles?
A chef cooks 1 ½ potatoes for each serving of mashed potatoes. How many servings can he make from 18 potatoes?	Suppose you are selling stuffed animals for \$6 each to raise money for your club. You sold six more rabbits than monkeys. If you sold \$120 worth of stuffed animals, how many of each type did you sell?
Suppose a video store charges non-member \$4 to rent a video. A membership costs \$21 and then videos cost only \$2.50 to rent. How many videos would you need to rent in order to justify a membership?	Suppose you decide to make and sell silk flower arrangements. You spend \$220.00 on materials. You sell each flower arrangement for \$10.50 each. How much profit would you make if you sold 23 silk flower arrangements?

The new parking lot has spaces for 450 cars. The	You are designing a cylindrical storage container for
ratio of spaces for full sized cars to compact cars is	compost. You want it to hold 55 ft ³ and be 8 ft
11 to 4. How many spaces are for full-sized cars?	high. Use the formula V= $\pi r^2 h$ to find the radius of
How many spaces are for compact cars?	the storage container.
A ladder is 25 ft long. The ladder needs to reach to a window that is 24 ft above the ground. How far away from the building should the bottom of the ladder be placed?	There is a large building on fire. Fire trucks from two different stations respond to the fire. One station is 1 mi east and 2 mi north of the fire. The other station is 2 mi west and 1 mi south of the fire. How far apart are the two fire stations?

Part 8: Graphing

Graph each of the following equations or inequalities.

Part 9: Systems of Equations

Find the solution to each system of equations using either substitution or elimination.

1.	x + y = 12 x = y + 2	2. 3x + 2y = 7 -x + 3y = 8
3.	x = 3y + 1 6x = y + 6	4. x + y = 7 x - y = 9
5.	y = 2x 3x + y = 5	6. x = 4 y = 3x - 5
7.	3y = 2 - x 2x = 7 - 3y	8. 2x + 3y = -1 3x + 5y = -2

Find the solution to each system by graphing.

Part 10: Working with Formulas (Distance, Midpoint, Slope)

Find the distance between each of the following pairs of points. Put all answers in reduced radical form. [d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$]

1. B(3, -8) o	nd C(9, -2)		2. X(-5, 3) and Z(4, 1)	
		d =		d =
3. M(8, 4) a	nd N(-2, 28)		4. E(-4, 4) and F(0, -4)	
		d =		d =
Find the coor	dinates of the midpoint b	etween each pa	ir of points. [M = $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$]	
5. A(5, 4) ai	nd B(3, 2)		6. C(3, 3) and D(-2, -1)	
		M =		M =
7. T(3, -4) c	nd R(-5, -7)		8. S(-1, 0) and V(5, -5)	
		M =		M =
Find the slop	e of the line between each	n pair of points.	$[m = \frac{y_2 - y_1}{x_2 - x_1}]$	
9. A(2, 8) ai	nd B(-10, -8)		10. T(0, -7) and R(10, 2)	

	m =		m =
11. B(8, 1) and R(-2, 5)		12. M(10, 2) and W(10, -5)	
	m =		m =