Post-Algebra I, Pre-Geometry Summer Packet
(Concepts expected to be understood upon entering a high-school Geometry course)

Name
Algebra I information:
Grade Level \qquad School \qquad Teacher \qquad

In order to be successful in a Geometry course at the high-school level, a student needs to have a firm grasp of the material covered in Algebra I. This packet is an attempt to highlight the skills obtained in Algebra I that are used most often in a Geometry course. During the school year, other Algebra I - based skills that may not be covered in this packet will be necessary for success in a Geometry class, but this packet should serve as a guide to the skills considered most vital.

Part 1: Solving Equations

Solve for the variable in each equation using any method.

| 1. $3 x+6=24$ | | 2. $\frac{3}{4}(d-3)=6$ |
| :--- | :--- | :--- | :--- |
| 3. $\frac{8 r+5-3 r}{4}=10$ | | 4. $\frac{6}{\mathrm{w}}=-24$ |
| 5. $28=7(y-7)$ | | $6.0=x^{2}+x$ |
| 7. $9 x^{2}=16$ | | $8 . x^{2}-7 x+12=0$ |
| 9. $3 x^{2}-6 x-2=4+5 x-7 x^{2}$ | | $10 . x^{2}=2 x+24$ |
| $11 . ~$ | | |

Part 2: Simplifying and Evaluating Expressions

1. Evaluate $f(a, b)=a b^{2}+\frac{1}{2} a-3 a c$ for $a=12, b=-6, c=-4$.
2. Simplify: $5 x^{3} y^{4}+7 x^{2} y^{4}-2 x^{3} y^{4}$
3. Evaluate $f(x, y, z)=2.5 x^{3}+x^{-2} y-x z$ for $x=4, y=8$, and $z=-3$.
4. Simplify: $(5 y-6)^{2}$

| 5. Simplify: $\left(5 x^{2}-4 y^{3}\right)\left(3 x^{3}+6 y\right)$ | 6. Simplify: $8 \sqrt{3}+3 \sqrt{27}-\sqrt{300}$ |
| :--- | :--- | :--- |
| 7. Simplify: $10 \sqrt{6} \bullet 2 \sqrt{2} \bullet 3 \sqrt{3}$ | 8. Simplify: $2 \sqrt{2} \bullet 3 \sqrt{3} \bullet 5 \sqrt{2}+4 \sqrt{3} \bullet 2 \sqrt{3}$ |
| 9. Simplify: $\left(3 x^{2}-5 y\right)^{2}$ | 10. Simplify: $(8 x-5 y)^{3}$ |

Part 3: Exponents and Radicals

Simplify the following radical expressions.

1. $\sqrt{40}$		2. $4 \sqrt{24}$	
3. $6 \sqrt{49}$		4. $2 \sqrt{28}+\sqrt{63}$	
5. $6 \sqrt{8}-\sqrt{98}$		$6.2 \sqrt{10} 3 \sqrt{6}$	
7. $\frac{6 \sqrt{48}-2 \sqrt{27}}{\sqrt{12}}$		$8 . \quad(2 \sqrt{2})^{2}$	
$9 . \quad(5 \sqrt{7})^{2}$		$10 .(\sqrt{20})^{3}$	

Part 4: Working with Like and Unlike Terms

11. $\left(6 x^{2}+1\right)+\left(5 x^{2}-4\right)$
12. $\left(x^{2}-3 x+3\right)-\left(x^{2}+x-1\right)$
13. $\left(2 x^{3}+11 x+2\right)-\left(x^{3}-2 x+7\right)$
14. $(14-16 x)+(10 x-5)$

15. $\left(8 x^{3}-1\right)-\left(20 x^{3}+2 x^{2}-x-5\right)$	$16.6 x-\left(22 x+3-36 x^{2}+x^{3}\right)$
$17 .\left(4 x^{2}-15 x+16\right)+(2 x-20)$	$18 .\left(7 x^{3}-2+x^{2}+13 x\right)-\left(4 x^{3}+10\right)$

Part 5: Factoring

Factor each expression or equation, if possible. Solve for x if you are working with an equation.

1. $3 x^{3}+15 x^{2}$	2. $\mathrm{x}^{2}+7 \mathrm{x}=-12$	
3. $\mathrm{x}^{2}-\mathrm{x}-6=0$	4. $\mathrm{x}^{2}-25$	
5. $\mathrm{x}^{2}+4$	6. $2 \mathrm{x}^{2}-5 \mathrm{x}=3$	
7. $3 x^{2}-19 x y+20 y^{2}$	8. $16 x^{2}-9 y^{2}$	
9. $10 x^{2}+17 x y+3 y^{2}$	10. $-4 \mathrm{x}=10 \mathrm{x}^{2}-24 \mathrm{x}^{3}$	(careful - there are 3 answers herel)

Part 6: Pythagorean Theorem Use the Pythagorean Theorem to find n. Express n as a radical in simplest form. Show your work

11. \qquad	12. \qquad	13. \qquad
14. \qquad	15. \qquad	16. \qquad
17.		

Part 7: Word Problems

A CD player costs $\$ 129.95$ with a sales tax rate of 8%. What is the total cost of the CD player?	A car rental agency charges a fee of $\$ 35$ per day plus $\$.20$ for each mile driven. How much will it cost to rent the car for 4 days and drive 730 miles?
A chef cooks $1 \frac{1}{2}$ potatoes for each serving of mashed potatoes. How many servings can he make from 18 potatoes?	Suppose you are selling stuffed animals for $\$ 6$ each to raise money for your club. You sold six more rabbits than monkeys. If you sold $\$ 120$ worth of stuffed animals, how many of each type did you sell?
Suppose a video store charges non-member $\$ 4$ to rent a video. A membership costs $\$ 21$ and then videos cost only $\$ 2.50$ to rent. How many videos would you need to rent in order to justify a membership?	Suppose you decide to make and sell silk flower arrangements. You spend $\$ 220.00$ on materials. You sell each flower arrangement for $\$ 10.50$ each. How much profit would you make if you sold 23 silk flower arrangements?

The new parking lot has spaces for 450 cars. The ratio of spaces for full sized cars to compact cars is 11 to 4. How many spaces are for full-sized cars? How many spaces are for compact cars?	You are designing a cylindrical storage container for compost. You want it to hold $55 \mathrm{ft}^{3}$ and be 8 ft high. Use the formula $V=\pi r^{2} h$ to find the radius of the storage container.
A ladder is 25 ft long. The ladder needs to reach to a window that is 24 ft above the ground. How far away from the building should the bottom of the ladder be placed?	There is a large building on fire. Fire trucks from two different stations respond to the fire. One station is 1 mi east and 2 mi north of the fire. The other station is 2 mi west and 1 mi south of the fire. How far apart are the two fire stations?

Part 8: Graphing

Graph each of the following equations or inequalities.

Part 9: Systems of Equations

Find the solution to each system of equations using either substitution or elimination.

1. $\begin{aligned} & x+y=12 \\ & x=y+2 \end{aligned}$	$\text { 2. } \begin{array}{r} 3 x+2 y=7 \\ -x+3 y=8 \end{array}$
$\text { 3. } \begin{array}{r} x=3 y+1 \\ 6 x=y+6 \end{array}$	4. $\begin{aligned} & x+y=7 \\ & x-y=9 \end{aligned}$
$\text { 5. } \quad \begin{aligned} & y=2 x \\ & 3 x+y=5 \end{aligned}$	$\text { 6. } \quad \begin{aligned} & x=4 \\ & y=3 x-5 \end{aligned}$
$\text { 7. } \quad \begin{aligned} & 3 y=2-x \\ & 2 x=7-3 y \end{aligned}$	8. $\begin{aligned} 2 x+3 y & =-1 \\ 3 x+5 y & =-2\end{aligned}$

Find the solution to each system by graphing.
9. $y=2 x+1$
$-4 x+y=7$

10. $2 x=y$
$x+y=3$

Part 10: Working with Formulas (Distance, Midpoint, Slope)

Find the distance between each of the following pairs of points. Put all answers in reduced radical form.
$\left[\mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]$

1. $B(3,-8)$ and $C(9,-2)$	$d=$	2. $X(-5,3)$ and $Z(4,1)$	d
3. $M(8,4)$ and $N(-2,28)$		4. $E(-4,4)$ and $F(0,-4)$	
	$d=$		$d=$

Find the coordinates of the midpoint between each pair of points. [$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$]

5. $A(5,4)$ and $B(3,2)$	M	6. $C(3,3)$ and $D(-2,-1)$	$M=$
7. $T(3,-4)$ and $R(-5,-7)$		8. $S(-1,0)$ and $V(5,-5)$	
	$M=$		$M=$

Find the slope of the line between each pair of points. $\left[m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]$
9. $A(2,8)$ and $B(-10,-8)$
10. $T(0,-7)$ and $R(10,2)$

$11 . B(8,1)$ and $R(-2,5)$	$12 . M(10,2)$ and $W(10,-5)$	
	$m=$	$m=$

