Science

Constructed Response Items

Measures of Student Learning: NC's Common Exams

Released Fall 2012

These released test items may be used by school systems to help acquaint students with constructed response items on the Measures of Student Learning: NC's Common Exams. These materials must not be used for personal or financial gain.

Table of Contents

	Page
Science	
Chemistry	1
RubricsChemistry	
Appendix to Constructed Response Key Chemistry	
Earth/Environmental Science	6
RubricsEarth Environmental Science	
Appendix to Constructed Response Key Earth/Environmental	Y Company
Physical Science	11
RubricsPhysical Science	
Appendix to Constructed Response Key Physical Science	
Physics	16
RubricsPhysics	19
Appendix to Constructed Response Key Physics	

CHEMISTRY

The questions you read next will require you to answer in writing.

- 1. Write your answers on separate paper.
- 2. Be sure to write your name on each page.
- 1 Atomic size is one of many trends of the periodic table.
 - Describe one reason atomic size may vary among the elements of the periodic table.
 - List the correct order of aluminum, magnesium, phosphorus, silicon, sodium, and sulfur, based on decreasing atomic size.
- 2 During a laboratory experiment, 75 grams of water at 100°C is transformed into steam at 100°C.
 - Describe how this experiment confirms the law of conservation of energy.
 - How much heat energy is needed to completely change the state of the water? Show your work.
- A compound contains the elements copper and chlorine in a ratio of 1 copper: 2 chlorine.
 - What is the empirical formula for this compound?
 - What is the percent composition of copper in this compound? Show your work.
 - What is the percent composition of chlorine in this compound? Show your work.

CHEMISTRY

- 4 Acids are solutions with specific characteristics.
 - Describe the chemical reaction which occurs between an acid and a metal.
 - If a ribbon of magnesium and hydrochloric acid were combined, which products would result in this chemical reaction?
- A solution containing 12.9 g of MgCl₂ is dissolved in water to make a 0.54-L solution.
 - What is the Molarity of the solution? Show your work.
 - Describe how decreasing the volume would affect the Molarity of the solution.

RUBRICS---CHEMISTRY

- 1. Atomic size is one of many trends of the periodic table.
 - Describe one reason atomic size may vary among the elements of the periodic table.
 - List the correct order of aluminum, magnesium, phosphorus, silicon, sodium, and sulfur, based on decreasing atomic size.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Describes a reason atomic size varies on the periodic table; sequences the elements in order of decreasing atomic size
 - 2. During a laboratory experiment, 75 grams of water at 100°C is transformed into steam at 100°C.
 - Describe how this experiment confirms the law of conservation of energy.
 - How much heat energy is needed to completely change the state of the water? Show your work.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Describes how the experiment follows the law of conservation of energy; calculates the amount of heat energy transferred during the phase change
 - 3. A compound contains the elements copper and chlorine in a ratio of 1 copper: 2 chlorine.
 - What is the empirical formula for this compound?
 - What is the percent composition of copper in this compound? Show your work.
 - What is the percent composition of chlorine in this compound? Show your work.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Determines the empirical formula for copper and chlorine; calculates the percent composition of copper; calculates the percent composition of chlorine

RUBRICS---CHEMISTRY

- 4. Acids are solutions with specific characteristics.
 - Describe the chemical reaction which occurs between an acid and a metal.
 - If a ribbon of magnesium and hydrochloric acid were combined, which products would result in this chemical reaction?
- Score 0 No response or the response does not address the prompt

 Score 1 Fulfills only 1 of 2 requirements of a level 2 performance

 Score 2 Describes the chemical reaction between an acid and a metal; identifies the products of the chemical reaction between magnesium and hydrochloric acid
 - 5. A solution containing 12.9 g of $MgCl_2$ is dissolved in water to make a 0.54-L solution.
 - What is the Molarity of the solution? Show your work.
 - Describe how decreasing the volume would affect the Molarity of the solution.
- Score 0 No response or the response does not address the prompt
 Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
 Score 2 Calculates the Molarity of the solution; describes how decreasing the volume could affect the Molarity of the solution

QID	Discrete Answers for Student Responses (* Student answers may vary.)
1	Score Point 1: * Score Point 2: Na, Mg, Al, Si, P, S
2	Score Point 1: * Score Point 2: 169,000 J
3	Score Point 1: CuCl ₂ Score Point 2: 47 % Score Point 3: 53 %
4	Score Point 1: * Score Point 2: hydrogen gas (H ₂) and magnesium chloride/salt (MgCl ₂)
5	Score Point 1: 0.25 M Score Point 2: *

EARTH/ENVIRONMENTAL SCIENCE

The questions you read next will require you to answer in writing.

- 1. Write your answers on separate paper.
- 2. Be sure to write your name on each page.
- 1 A weather map shows closely spaced isobar lines over an area.
 - What do the isobar lines represent?
 - What do the closely spaced isobars indicate about the weather in the area?
- 2 Volcanoes are a major geologic feature on Earth.
 - Describe the particles and gases emitted during a volcanic eruption.
 - Describe how a volcano can impact global climate.
- 3 Hydroelectric resources can be used to produce electricity in some areas of the country.
 - What is an advantage of using hydroelectric resources for power rather than using fossil fuel resources for power?
 - What is a disadvantage of using hydroelectric resources for the production of electricity?
- 4 Many farmers use conventional methods of growing crops.
 - What is one advantage of using conventional agricultural methods?
 - How can conventional agricultural methods impact the economy?

EARTH/ENVIRONMENTAL SCIENCE

- 5 To conserve natural resources, people are encouraged to "reduce, reuse, recycle."
 - Identify one example of a material that could be reused.
 - How could reusing the object provide a lasting impact on the environment?

RUBRICS---EARTH/ENVIRONMENTAL SCIENCE

- 1. A weather map shows closely spaced isobar lines over an area.
 - What do the isobar lines represent?
 - What do the closely spaced isobars indicate about the weather in the area?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Explains what isobar lines represent; provides an accurate description of the weather associated with closely spaced isobars
- 2. Volcanoes are a major geologic feature on Earth.
 - Describe the particles and gases emitted during a volcanic eruption.
 - Describe how a volcano can impact global climate.
- Score 0 No response or the response does not address the prompt
- **Score 1** Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Provides an accurate description of the particles and gases emitted from a volcanic eruption; provides an accurate description of how those particles can lead to global climate change
- 3. Hydroelectric resources can be used to produce electricity in some areas of the country.
 - What is an advantage of using hydroelectric resources for power rather than using fossil fuel resources for power?
 - What is a disadvantage of using hydroelectric resources for the production of electricity?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Provides an advantage of using hydroelectric resources; provides a disadvantage of using hydroelectric resources

RUBRICS---EARTH/ENVIRONMENTAL SCIENCE

- 4. Many farmers use conventional methods of growing crops.
 - What is one advantage of using conventional agricultural methods?
 - How can conventional agricultural methods impact the economy?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Provides an advantage for conventional agricultural methods; assesses the impact conventional agricultural methods have on the economy
- 5. To conserve natural resources, people are encouraged to "reduce, reuse, recycle."
 - Identify one example of a material that could be reused.
 - How could reusing the object provide a lasting impact on the environment?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Provides an example of an item that could be reused; assesses the lasting impact of reusing the item on the environment

QID	Discrete Answers for Student Responses (* Student answers may vary.)				
1	Score Point 1: * Score Point 2: *				
2	Score Point 1: * Score Point 2: *				
3	Score Point 1: * Score Point 2: *				
4	Score Point 1: * Score Point 2: *				
5	Score Point 1: * Score Point 2: *				

PHYSICAL SCIENCE

The questions you read next will require you to answer in writing.

- 1. Write your answers on separate paper.
- 2. Be sure to write your name on each page.
- Describing an object's movement depends on the frame of reference that is being used.
 - What is a frame of reference?
 - Choose one object in the classroom and provide an example of how that object can be used as a frame of reference.
- 2 Matter changes from one state to another state during a phase change.
 - Explain how the processes of evaporation and boiling are similar.
 - Explain how the processes of evaporation and boiling are different.
- 3 A student is holding a stack of books.
 - Is the student doing any work on the books? Explain your answer.
- 4 A man wants to move a 200-N box a height of 4 meters, using a ramp that is 5 meters long.
 - What type of simple machine is the ramp?
 - Describe what happens to the input force now as a result of using the ramp to move the box.
 - Calculate the Ideal Mechanical Advantage (IMA) of the ramp. Show your work.

PHYSICAL SCIENCE

- 5 A wave has a frequency of 55 Hz and a speed of 35 m/s.
 - What is the wavelength of the wave? Show your work.
 - If the frequency of the wave increases, what will happen to the wavelength?
- A girl drops a penny in the shallow end of a swimming pool. As she bends down to pick up the penny, she realizes that the penny is farther away in the pool than it appears.
 - Identify the wave behavior that is taking place.
 - How does the wave behavior cause the penny to appear closer than it actually is?

RUBRICS---PHYSICAL SCIENCE

- 1. Describing an object's movement depends on the frame of reference that is being used.
 - What is a frame of reference?

the object can be used as a frame of reference

- Choose one object in the classroom and provide an example of how that object can be used as a frame of reference.
- Score 0 No response or the response does not address the prompt

 Score 1 Fulfills only 1 of 3 requirements of a level 3 performance

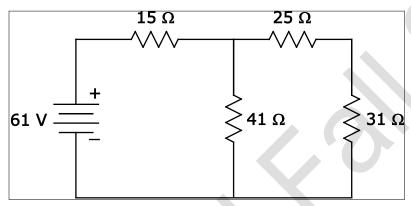
 Score 2 Fulfills 2 of 3 requirements of a level 3 performance

 Score 3 Describes frame of reference; identifies an example that can be used as a frame of reference; provides an example of how
- 2. Matter changes from one state to another state during a phase change.
 - Explain how the processes of evaporation and boiling are similar.
 - Explain how the processes of evaporation and boiling are different.
- Score 0 No response or the response does not address the prompt
 Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
 Score 2 Provides an explanation for how evaporation and boiling are similar; provides an explanation for how evaporation and boiling are different
- 3. A student is holding a stack of books.
 - Is the student doing any work on the books? Explain your answer.
- Score 0 No response or the response does not address the prompt
 Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
 Score 2 Determines if the student is performing work; explains valid reason for answer

RUBRICS---PHYSICAL SCIENCE

- 4. A man wants to move a 200-N box a height of 4 meters, using a ramp that is 5 meters long.
 - What type of simple machine is the ramp?
 - Describe what happens to the input force now as a result of using the ramp to move the box.
 - Calculate the Ideal Mechanical Advantage (IMA) of the ramp. Show your work.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Identifies an accurate type of simple machine associated with the ramp; provides an accurate description of how the input force is impacted by using a ramp; calculates an accurate value for the IMA of the inclined plane (ramp)
- 5. A wave has a frequency of 55 Hz and a speed of 35 m/s.
 - What is the wavelength of the wave? Show your work.
 - If the frequency of the wave increases, what will happen to the wavelength?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Calculates the wavelength of the wave; describes the change in wavelength as frequency increases
- 6. A girl drops a penny in the shallow end of a swimming pool. As she bends down to pick up the penny, she realizes that the penny is farther away in the pool than it appears.
 - Identify the wave behavior that is taking place.
 - How does the wave behavior cause the penny to appear closer than it actually is?
- Score 0 No response or the response does not address the prompt
- **Score 1** Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Identifies the wave behavior that causes light waves to bend; provides an explanation of refraction

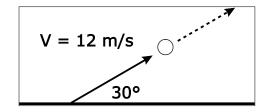
APPENDIX TO CONSTRUCTED RESPONSE KEY PHYSICAL SCIENCE


QID	Discrete Answers for Student Responses				
	(* Student answers may vary.)				
	Score Point 1: *				
1	Score Point 2: *				
	Score Point 3: *				
2	Score Point 1: *				
	Score Point 2: *				
	Score Point 1: No				
3	Score Point 1: No				
4	Score Point 1: inclined plane				
	Score Point 2: *				
	Score Point 3: 1.25				
	Score Point 1: 0.64 m				
5	Score Point 1: 0.04 III				
	SCOIC FUIIL 2.				
6	Score Point 1: refraction				
	Score Point 1: *				
	SCOTE FORMEZ.				

PHYSICS

The questions you read next will require you to answer in writing.

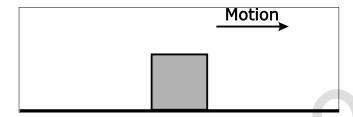
- 1. Write your answers on separate paper.
- 2. Be sure to write your name on each page.
- This diagram represents a DC circuit. Using the information in the circuit diagram, answer the questions below.



- What is the total resistance of the circuit? Show your work.
- How much total current is flowing through the circuit? Show your work.
- If the 41- Ω resistor seems to be producing a different amount of resistance than 41 Ω , what should be done to verify this?

PHYSICS

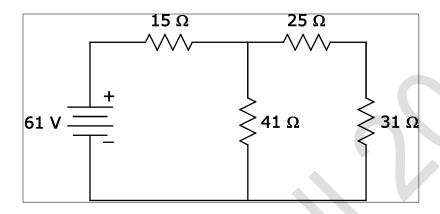
2 An object is projected with a velocity of 12.0 m/s at an angle 30.0° above the horizontal. Ignore air resistance.


- What are the horizontal and vertical components of the initial velocity of the object? Show your work.
- What distance does the object travel in the vertical direction? Show your work.
- A force of 18 N parallel to the ground pulls on a 4.8-kg box, but the box remains at rest.
 - What is the frictional force acting on the box? Show your work.
 - Draw and label a free-body diagram to explain your answer.

- 4 After applying a braking force of 290 N, the speed of a 115-kg motorcycle decreased from 45 m/s to 30 m/s.
 - How much time did it take for the motorcycle to decrease its speed to 30 m/s? Explain your answer.
 - Explain, using Newton's laws of motion, why decreasing the speed of a moving object is not instantaneous.

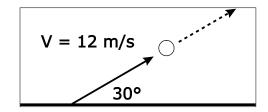
PHYSICS

A horizontal force acts on a block, making it slide on a horizontal surface. The force of friction between the block and the surface is 0.5 N.



- If the direction of the applied initial force causing the block to slide is reversed, how will this affect the force of friction on the block? Explain your answer.
- How will reversing the initial force affect the net force on the block? Explain your answer.
- How will reversing the initial force affect the acceleration of the block? Explain your answer.

1. This diagram represents a DC circuit. Using the information in the circuit diagram, answer the questions below.



- What is the total resistance of the circuit? Show your work.
- How much total current is flowing through the circuit? Show your work.
- If the 41- Ω resistor seems to be producing a different amount of resistance than 41 Ω , what should be done to verify this?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Calculates the circuit's total resistance; calculates the amount of current flowing through the circuit; describes a way to determine the status of the 41 Oresistor

RUBRICS---PHYSICS

2. An object is projected with a velocity of 12.0 m/s at an angle 30.0° above the horizontal. Ignore air resistance.

- What are the horizontal and vertical components of the initial velocity of the object? Show your work.
- What distance does the object travel in the vertical direction? Show your work.

Score 0 No response or the response does not address the prompt

Score 1 Fulfills only 1 of 3 requirements of a level 3 performance

Score 2 Fulfills 2 of 3 requirements of a level 3 performance

Score 3 Calculates the horizontal initial velocity; calculates the vertical initial velocity; calculates the vertical distance traveled by the object

- 3. A force of 18 N parallel to the ground pulls on a 4.8-kg box, but the box remains at rest.
 - What is the frictional force acting on the box? Show your work.
 - Draw and label a free-body diagram to explain your answer.

Score 0 No response or the response does not address the prompt

Score 1 Fulfills only 1 of 2 requirements of a level 2 performance

Score 2 Calculates the frictional force acting on the box; draws and labels a free body diagram describing the scenario

RUBRICS---PHYSICS

- 4. After applying a braking force of 290 N, the speed of a 115-kg motorcycle decreased from 45 m/s to 30 m/s.
 - How much time did it take for the motorcycle to decrease its speed to 30 m/s? Explain your answer.
 - Explain, using Newton's laws of motion, why decreasing the speed of a moving object is not instantaneous.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Calculates the amount of time required for the motorcycle to decrease its speed; explains why decreasing speed is not instantaneous using Newton's laws of motion
- 5. A horizontal force acts on a block, making it slide on a horizontal surface. The force of friction between the block and the surface is 0.5 N.

- If the direction of the applied initial force causing the block to slide is reversed, how will this affect the force of friction on the block? Explain your answer.
- How will reversing the initial force affect the net force on the block? Explain your answer.
- How will reversing the initial force affect the acceleration of the block?
 Explain your answer.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Explains how reversing the applied force affects the force of friction; explains how reversing the applied force affects the net force; explains how reversing the applied force affects the acceleration of the block

APPENDIX TO CONSTRUCTED RESPONSE KEY PHYSICS

QID	Discrete Answers for Student Responses					
	(* Student answers may vary.)					
	Score Point 1: 38.7 Ω or any equivalent/rounded value					
1	Score Point 2: 1.6 A or any equivalent/rounded value					
	Score Point 3: *					
2	Score Point 1: horizontal $v_i = 6\sqrt{3}$ m/s or 10.4 m/s and vertical $v_i = 6$ m/s Score Point 2: 1.84 m or any equivalent/rounded value					
3	Score Point 1: 18 N Score Point 2: *					
4	Score Point 1: 5.9 s or any equivalent/rounded value Score Point 2: *					
5	Score Point 1: *					
	Score Point 2: *					
	Score Point 3: *					