Mathematics

Constructed Response Items

Measures of Student Learning: NC's Common Exams

Released Fall 2012

These released test items may be used by school systems to help acquaint students with constructed response items on the Measures of Student Learning: NC's Common Exams. These materials must not be used for personal or financial gain.

Table of Contents

Mathematics	Paye
Advanced Functions and Modeling	1
RubricsAdvanced Functions and Modeling	4
Appendix to Constructed Response Key Advanced Functions and Modeling	0
Algebra II/Integrated Math III	10
RubricsAlgebra II/Integrated Math III	13
Appendix to Constructed Response Key Algebra II/Integrated Math	III 16
Geometry	
RubricsGeometry	21
Appendix to Constructed Response Key Geometry	26
	72
RubricsPre-calculus	
Appendix to Constructed Response Key Pre-calculus	
FF	···· • •

ADVANCED FUNCTIONS AND MODELING

The questions you read next will require you to answer in writing.

- 1. Write your answers on separate paper.
- 2. Be sure to write your name on each page.
- 1 The chart below shows the amount of insulin in a person's bloodstream after a certain amount of time, *t*.

t (minutes)	3	15	24	45
Units of Insulin	8.6	4.9	3.1	1.0

Create a best fit exponential function to answer the questions.

- To the nearest tenth, how many units of insulin are in the person's bloodstream at t = 0?
- To the nearest percent, what is the absolute value of the percent change per minute of insulin?
- 2 A geologist is analyzing the erosion of a coastline over the past five years. The table below shows the relationship.

Time (years)	1	2	3	4	5
Cumulative Erosion (feet)	1.01	2.81	6.51	10.14	16.32

- Does a linear, exponential, or power function best fit the data? Explain.
- Write the equation of the function that best models the data.
- Using the equation created, how much erosion can be expected after 8 years?

- 3 A restaurant determined that the calories of its meals are normally distributed. The mean is 680 calories with a standard deviation of 63 calories.
 - Give a range of calories, centered on the mean, that includes 95% of the restaurant's meals.
 - The cook creates a meal with 617 calories. What percentage of meals has more calories than this meal?
- 4 The table below shows the cumulative frequency of student achievement scores for a particular class.

ADVANCED FUNCTIONS AND MODELING

- 5 A professor of a statistics class has the following scores for her students: 296, 332, 290, 308, 343, 371, 336, 384, 361, 350.
 - If 10 points are added to each score, what is the new mean and standard deviation?
- 6 Use the piecewise function below to answer each question.

 $h(x) = \begin{cases} -2x^2 + 5x + 10 & \text{for } -4 \le x < 3 & \text{Step 1} \\ 3x + 2 & \text{for } 3 \le x < 7 & \text{Step 2} \\ \sqrt{2x - 5} & \text{for } 7 \le x < 16 & \text{Step 3} \end{cases}$

- What is the range for step 1?
- What is the domain for the entire function?
- What is *h*(10.5)?
- 7 For the following problem, round each answer to the nearest hundredth.
 - Write the equation of the power function that passes through the points (1, 6) and (3, 14).
 - Based on the above function, what is the value of x when y = 8?

8 Power functions can be written in the form $f(x) = ax^{b}$, where b > 1.

- Write an equation for an odd, positive-integer power function of this form.
- Graph the equation including enough of the domain to show the graph's important features.

1. The chart below shows the amount of insulin in a person's bloodstream after a certain amount of time, *t*.

t (minutes)	3	15	24	45
Units of Insulin	8.6	4.9	3.1	1.0

Create a best fit exponential function to answer the questions.

- To the nearest tenth, how many units of insulin are in the person's bloodstream at t = 0?
- To the nearest percent, what is the absolute value of the percent change per minute of insulin?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Calculates a number for the units of insulin at t = 0 that fits with the data; calculates an absolute value for the percent change that fits the data
- 2. A geologist is analyzing the erosion of a coastline over the past five years. The table below shows the relationship.

Time (years)	1	2	3	4	5
Cumulative Erosion (feet)	1.01	2.81	6.51	10.14	16.32

- Does a linear, exponential, or power function best fit the data? Explain.
- Write the equation of the function that best models the data.
- Using the equation created, how much erosion can be expected after 8 years?
- Score 0 No response or the response does not address the task
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Indicates the type of function that best models the data and explains its meaning; writes an equation that best models the data; calculates the amount of erosion expected after 8 years using the written equation

- 3. A restaurant determined that the calories of its meals are normally distributed. The mean is 680 calories with a standard deviation of 63 calories.
 - Give a range of calories, centered on the mean, that includes 95% of the restaurant's meals.
 - The cook creates a meal with 617 calories. What percentage of meals has more calories than this meal?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Determines a range of calories centered around the mean that 95% of the meals will fall in; determines the percentage of meals that contain more than 617 calories

4. The table below shows the cumulative frequency of student achievement scores for a particular class.

Student Achievement Scores

- Which 25-point interval contains the median achievement score?
- How many students scored at least a 276 on the achievement test?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Identifies an interval that contains the median of the data; determines how many students scored at least 276 points

RUBRICS---ADVANCED FUNCTIONS AND MODELING

- 5. A professor of a statistics class has the following scores for her students: 296, 332, 290, 308, 343, 371, 336, 384, 361, 350.
 - If 10 points are added to each score, what is the new mean and standard deviation?
- **Score 0** No response or the response does not address the prompt
- Score 1 Determines the mean OR standard deviation for the new data
- Score 2 Determines the mean AND standard deviation for the new data
- 6. Use the piecewise function below to answer each question.

	$\int (-2x^2 + 5x + 10)$	for	[−] 4 ≤	x	< 3	Step 1
h(x) = -	3 <i>x</i> + 2	for	3 ≤	< <i>x</i>	< 7	Step 2
	$\sqrt{2x-5}$	for	7 ≤	< <i>x</i>	< 16	Step 3

- What is the range for step 1?
- What is the domain for the entire function?
- What is *h*(10.5)?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Determines the range for step 1; determines the domain for the entire function; calculates the value of h(10.5)

RUBRICS---ADVANCED FUNCTIONS AND MODELING

7. For the following problem, round each answer to the nearest hundredth.

- Write the equation of the power function that passes through the points (1, 6) and (3, 14).
- Based on the above function, what is the value of x when y = 8?
- **Score 0** No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Provides an equation for the power function that passes through the points given; calculates a value for x when y = 8using the written equation
- 8. Power functions can be written in the form $f(x) = ax^{b}$, where b > 1.
 - Write an equation for an odd, positive-integer power function of this form.
 - Graph the equation including enough of the domain to show the graph's important features.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Writes an equation for an odd, positive-integer power function; graphs an image of the chosen function

APPENDIX TO CONSTRUCTED RESPONSE KEY ADVANCED FUNCTIONS AND MODELING

QID	Discrete Answers for Student Responses (* Student answers may vary)
1	Score Point 1: * Score Point 2: *
2	Score Point 1: power function with explanation from student Score Point 2: * Score Point 3: *
3	Score Point 1: 554 calories to 806 calories Score Point 2: 84%
4	Score Point 1: 276–300 interval Score Point 2: 21 students
5	Score Point 1: mean score of 347.1 Score Point 2: standard deviation of 31.5
6	Score Point 1: [-42, 13.125] Score Point 2: [-4, 16) Score Point 3: 4
7	Score Point 1: * Score Point 2: *
8	Score Point 1: * Score Point 2: *

ALGEBRA II/INTEGRATED MATH III

(+	\square
×	÷

The questions you read next will require you to answer in writing.

- 1. Write your answers on separate paper.
- 2. Be sure to write your name on each page.
- 1 A farmer has 600 yards of fence. He will use some of the fence to enclose a rectangular area. He will use the rest to divide the area into two congruent rectangles, as shown below.

- What is the value of *x* that results in the largest area?
- What is the largest area that the farmer can enclose?
- What are the length and the width of the outer fence that will produce the largest total area?

- 2 Suppose that Kyle has \$1,500 to invest. His investment will earn an interest rate of 8.25% compounded continuously.
 - To the nearest cent, what will be the value of Kyle's investment after 6 years?
 - To the nearest tenth, how long will it take for Kyle's investment to grow to \$3,000?
 - To the nearest tenth, what interest rate would be needed to triple Kyle's investment in 15 years?
- 3 The function $f(t) = 36(0.50)^{\frac{1}{5,730}t}$ models the amount of carbon-14, in mg, remaining in a sample *t* years after the year 1200.
 - What amount of carbon-14 was present in the sample in the year 1200?
 - What is the meaning of the coefficient of *t* in the context of the problem?
- 4 An apple orchard puts 6 apples in each basket it sells. Each apple weighs within 5% of 8 ounces.
 - Write a single inequality using absolute value that can be used to find the minimum total weight and the maximum total weight of the apples in each basket.
 - What are the minimum total weight and the maximum total weight of the apples in each basket?

- 5 A company produces two types of bicycle tires: mountain bike tires and racing tires.
 - I. The expected demand for mountain bike tires is at least 100 tires per week, and the expected demand for racing tires is at least 80 tires per week.
 - II. The company can produce no more than 200 mountain bike tires per week, and no more than 180 racing tires per week.
 - III. The company sells a maximum of 225 tires per week, and makes a net profit of \$5 per mountain bike tire and \$9 per racing tire.
 - Write a system that models the constraints on bicycle tire production. Define the variables you use.
 - How many of each tire should the company produce in order to maximize profit?

RUBRICS---ALGEBRA II/INTEGRATED MATH III

- +-×÷
- 1. A farmer has 600 yards of fence. He will use some of the fence to enclose a rectangular area. He will use the rest to divide the area into two congruent rectangles, as shown below.

- What is the value of x that results in the largest area?
- What is the largest area that the farmer can enclose?
- What are the length and the width of the outer fence that will produce the largest total area?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Determines a value for x that results in the largest area; determines a value for the largest area enclosed; provides a value for the dimensions of the fence that will create the largest area
- 2. Suppose that Kyle has \$1,500 to invest. His investment will earn an interest rate of 8.25% compounded continuously.
 - To the nearest cent, what will be the value of Kyle's investment after 6 years?
 - To the nearest tenth, how long will it take for Kyle's investment to grow to \$3,000?
 - To the nearest tenth, what interest rate would be needed to triple Kyle's investment in 15 years?
- **Score 0** No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Determines a value for the investment after 6 years; determines how long it will take the investment to grow to \$3,000; determines the interest rate needed for the investment to triple in 15 years

- 3. The function $f(t) = 36(0.50)^{\frac{1}{5,730}t}$ models the amount of carbon-14, in mg, remaining in a sample *t* years after the year 1200.
 - What amount of carbon-14 was present in the sample in the year 1200?
 - What is the meaning of the coefficient of *t* in the context of the problem?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Identifies a value for the amount of carbon-14 present in year 1200; explains the meaning of the coefficient of t in the context of the problem
- 4. An apple orchard puts 6 apples in each basket it sells. Each apple weighs within 5% of 8 ounces.
 - Write a single inequality using absolute value that can be used to find the minimum total weight and the maximum total weight of the apples in each basket.
 - What are the minimum total weight and the maximum total weight of the apples in each basket?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- **Score 2** Provides an inequality that accurately models the scenario; determines the minimum and maximum weights for the baskets based on the written equation

- 5. A company produces two types of bicycle tires: mountain bike tires and racing tires.
 - IV. The expected demand for mountain bike tires is at least 100 tires per week, and the expected demand for racing tires is at least 80 tires per week.
 - V. The company can produce no more than 200 mountain bike tires per week, and no more than 180 racing tires per week.
 - VI. The company sells a maximum of 225 tires per week, and makes a net profit of \$5 per mountain bike tire and \$9 per racing tire.
 - Write a system that models the constraints on bicycle tire production. Define the variables you use.
 - How many of each tire should the company produce in order to maximize profit?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- **Score 2** Writes a system of equations that models the constraints on tire production; determines a value for the number of each type of tire the company should produce to maximize profit

APPENDIX TO CONSTRUCTED RESPONSE KEY ALGEBRA II/INTEGRATED MATH III

(\pm)	Ξ
×	÷

		٦
QID	Discrete Answers for Student Responses	
	(* Student answers may vary.)	
	Score Point 1: 75 yards	
1	Score Point 2: 15,000 yards ²	
	Score Point 3: length = 150 yards, width = 100 yards	
	Score Point 1: \$2,460.75	
2	Score Point 2: 8.4 years	
	Score Point 3: 7.3 %	
3	Score Point 1: 36 mg Score Point 2: *	
4	Score Point 1: * Score Point 2: *	-
5	Score Point 1: * Score Point 2: *	

GEOMETRY

The questions you read next will require you to answer in writing.

1.Write your answers on separate paper.

2.Be sure to write your name on each page.

1 Circle *M* is shown below.

- What is the measure of ∠ADC?
- What is the measure of AE?

2 In quadrilateral *ABCD*, *BD* = 14 cm.

To the nearest tenth,

- What is the measure of \overline{AD} ?
- What is the measure of \overline{BC} ?
- What is the measure of \overline{CD} ?

3 In the diagram below, $a \Box b$.

What are the measures of $\angle 1$, $\angle 2$, and $\angle 3$? Explain how each angle measure is determined.

4 In the diagram of $\square MNO$, \overrightarrow{NP} is drawn, $\angle MTP \cong \angle OTP$ and $\overrightarrow{MT} \cong \overrightarrow{OT}$.

Using the diagram, write a proof showing that \overline{NT} bisects $\angle MNO$.

5 In the figure below, $\overline{MS} \cong \overline{MQ}$ and $\angle 1 \cong \angle 2$.

Based on the given facts, write a proof showing *QRST* is a parallelogram.

RUBRICS---GEOMETRY

1. Circle *M* is shown below.

- What is the measure of $\angle ADC$?
- What is the measure of AE?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Determines a value for the measure of angle *ADC*; determines a value for the measure of arc *AE*

2. In quadrilateral *ABCD*, *BD* = 14 cm.

To the nearest tenth,

- What is the measure of \overline{AD} ?
- What is the measure of \overline{BC} ?
- What is the measure of \overline{CD} ?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Determines the length of line segment *AD*; determines the length of line segment *BC*; determines the length of line segment *CD*

RUBRICS---GEOMETRY

3. In the diagram below, $a \square b$.

What are the measures of $\angle 1$, $\angle 2$, and $\angle 3$? Explain how each angle measure is determined.

- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Determines the measure of angle 1 and explains how it is determined; determines the measure of angle 2 and explains how it is determined; determined; determined the measure of angle 3 and explains how it is determined

RUBRICS---GEOMETRY

4. In the diagram of $\square MNO$, \overrightarrow{NP} is drawn, $\angle MTP \cong \angle OTP$ and $\overrightarrow{MT} \cong \overrightarrow{OT}$.

Using the diagram, write a proof showing that \overline{NT} bisects $\angle MNO$.

- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 3 requirements of a level 3 performance
- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Provides a complete proof which includes logical steps with accurate notation and wording of theorems, postulates, etc.; includes relevant, correct statements and reasons; sequences statements logically and aligns reasons accurately to their statements

5. In the figure below, $\overline{MS} \cong \overline{MQ}$ and $\angle 1 \cong \angle 2$.

Based on the given facts, write a proof showing *QRST* is a parallelogram.

Score 0 No response or the response does not address the prompt

Score 1 Fulfills only 1 of 3 requirements of a level 3 performance

- Score 2 Fulfills 2 of 3 requirements of a level 3 performance
- Score 3 Provides a complete proof, which includes logical steps with accurate notation and wording of theorems, postulates, etc.; includes relevant, correct statements and reasons; sequences statements logically and aligns reasons accurately to their statements

APPENDIX TO CONSTRUCTED RESPONSE KEY GEOMETRY

QID	Discrete Answers for Student Responses
	(* Student answers may vary.)
1	Score Point 1: 58° Score Point 2: 68°
	Score Point 1: 7.0 cm
2	Score Point 2: 5.1 ° or any equivalent/rounded value
	Score Point 3: 14.9 ° or any equivalent/rounded value
	Score Point 1: 106 °
3	Score Point 2: 74°
	Score Point 3: 74°
	Score Point 1: *
4	Score Point 2: *
	Score Point 3: *
	Score Point 1: *
5	Score Point 2: *
	Score Point 3: *

PRE-CALCULUS

The questions you read next will require you to answer in writing.

- Write your answers on separate paper.
- Be sure to write your name on each page.
- 1 The general equation of an ellipse is shown below.

 $9x^2 - 54x + 25y^2 - 100y - 44 = 0$

- Write an equivalent standard equation for the ellipse.
- Describe what the coefficients of x^2 and y^2 in the standard equation tell about this ellipse.
- 2 A child is pulling a sled through the snow with a force of 20 Newtons at an angle of 40°.
 - To the nearest tenth, what is the vertical component of the force?
 - To the nearest tenth, what is the horizontal component of the force?
- 3 The function $P(t) = 300e^{(0.038t)}$ models the number of bacteria in a population after *t* minutes.
 - What is the meaning of the coefficient of *e* in the context of the problem?
 - What is the meaning of the coefficient of *t* in the context of the problem?

4 A person is on a ride at a carnival. The table below shows approximately how high the person is off the ground after *t* seconds.

Seconds (t)	Feet off the Ground (h)
0	3
10	14
20	25
30	33
40	25
50	14
60	3

- Write an equation of the sine function that **best** fits the data.
- What is the meaning of the constant term in the equation you derived?
- 5 Scientists estimated the number of mosquitoes living in an area in different years.

Yea	r	Mosquitoes (in thousands)
1960)	6
1970)	8
1980)	12
1990)	18
2000)	34
2010)	42

The scientists then decided to use an exponential best-fit model to predict the number of mosquitoes that will be in the area in 2020.

- Write an equation that the scientists used to make their prediction.
- Use your equation to predict how many mosquitoes will be living in the area in 2020?

- 6 A window maker uses the graph of a rose curve to create a pattern in stained glass.
 - If the window maker uses the equation $r = 8\cos 4\theta$ to represent the curve, what is the maximum petal length?
 - How many petals does the graph have?
 - Explain your answers.
- 7 After driving 30 minutes at a constant rate, a mailman is 200 miles from his home. After 75 minutes, he is 150 miles from his home.
 - Write a set of parametric equations that represent the mailman's distance from home over time.
- 8 Let $f(x) = 4^x$.
 - Graph f(x 2) + 3.
 - Write a description of the transformation that occurred.

RUBRICS---PRE-CALCULUS

1. The general equation of an ellipse is shown below.

$$9x^2 - 54x + 25y^2 - 100y - 44 = 0$$

- Write an equivalent standard equation for the ellipse.
- Describe what the coefficients of x^2 and y^2 in the standard equation tell about this ellipse.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- **Score 2** Writes an equation for the standard version of the ellipse given; provides a description of the meaning of the coefficient of x^2 and y^2 in the standard equation written
 - A child is pulling a sled through the snow with a force of 20 Newtons at an angle of 40°.
 - To the nearest tenth, what is the vertical component of the force?
 - To the nearest tenth, what is the horizontal component of the force?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Calculates the vertical component of the force given; calculates the horizontal component of the force given
 - 3. The function $P(t) = 300e^{(0.038t)}$ models the number of bacteria in a population after *t* minutes.
 - What is the meaning of the coefficient of *e* in the context of the problem?
 - What is the meaning of the coefficient of *t* in the context of the problem?
- **Score 0** No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Explains in context the meaning of the coefficient of *e*; explains in context the meaning of the coefficient of *t*

4. A person is on a ride at a carnival. The table below shows approximately how high the person is off the ground after *t* seconds.

Seconds (t)	Feet off the Ground (h)
0	3
10	14
20	25
30	33
40	25
50	14
60	3

- Write an equation of the sine function that **best** fits the data.
- What is the meaning of the constant term in the equation you derived?
- Score 0 No response or the response does not address the prompt
- **Score 1** Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Writes a sine function that best fits the data; describes the meaning of the constant in the written equation

5. Scientists estimated the number of mosquitoes living in an area in different years.

Year	Mosquitoes (in thousands)
1960	6
1970	8
1980	12
1990	18
2000	34
2010	42

The scientists then decided to use an exponential best-fit model to predict the number of mosquitoes that will be in the area in 2020.

- Write an equation that the scientists used to make their prediction.
- Use your equation to predict how many mosquitoes will be living in the area in 2020?
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Writes an exponential best-fit equation for the data; predicts the number of mosquitoes living in the area in 2020 using the model
- 6. A window maker uses the graph of a rose curve to create a pattern in stained glass.
 - If the window maker uses the equation $r = 8\cos 4\theta$ to represent the curve, what is the maximum petal length?
 - How many petals does the graph have?
 - Explain your answers.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Calculates and explains what the petal length for the graph is; calculates and explains how many petals are created by the graph of the rose curve

RUBRICS---PRE-CALCULUS

- 7. After driving 30 minutes at a constant rate, a mailman is 200 miles from his home. After 75 minutes, he is 150 miles from his home.
 - Write a set of parametric equations that represent the mailman's distance from home over time.
- Score 0 No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Creates a 2-equation parametrization that represents the problem; uses correct coefficients and constants to model the mailman's route home
- 8. Let $f(x) = 4^x$.
 - Graph f(x 2) + 3.
 - Write a description of the transformation that occurred.
- **Score 0** No response or the response does not address the prompt
- Score 1 Fulfills only 1 of 2 requirements of a level 2 performance
- Score 2 Graphs a correct transformation of the function; provides a correct description of the transformation that occurred

APPENDIX TO CONSTRUCTED RESPONSE KEY PRE-CALCULUS

QID	Discrete Answers for Student Responses
	(* Student answers may vary.)
1	Score Point 1: $\frac{(x-3)^2}{25} + \frac{(y-2)^2}{9} = 1$ Score Point 2: *
2	Score Point 1: 12.9° Score Point 2: 15.3°
3	Score Point 1: * Score Point 2: *
4	Score Point 1: * Score Point 2: *
5	Score Point 1: * Score Point 2: *
6	Score Point 1: 8 with student explanation Score Point 2: 8 with student explanation
7	Score Point 1: * Score Point 2: *
8	Score Point 1: * Score Point 2: shifted to the right 2 units and up 3 units

zeleased Falland