State Board of Education | Department of Public Instruction

This document is designed to help North Carolina educators teach the Common Core. NCDPI staff are continually updating and improving these tools to better serve teachers.

5th Grade Math Curriculum Crosswalk
The following document is to be used to compare the 2003 North Carolina Mathematics Standard Course of Study and the Common Core State Standards for Mathematics.

As noted in the Common Core State Standards for Mathematics document, the instructional time in Grade 5 should focus on three critical areas:

1. (developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions);
2. extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and
3. developing understanding of volume.

To download the Common Core State Standards, please visit http://www.corestandards.org/the-standards.
Important Note: The current SCoS will continue to be the taught and tested standards in the 2010-11 and 2011-12 school years. We expect the new Common Core standards to be taught and assessed in schools for the first time in the 2012-13 school year. That said, we are providing resources now and over the next two-years so that schools and teachers can get a head start on internalizing and planning to teach the new standards.

NC SCOS			Common Core			
\|	\|l	Text of objective			Cluster	Comments
				$\left\lvert\, \begin{aligned} & \text { 坒 } \\ & \text { 荡 } \end{aligned}\right.$	Text of objective	
	$\underset{\sim}{\mathrm{N}}$	Develop fluency in adding and subtracting non－negative rational numbers（halves，fourths，eighths；thirds， sixths，twelfths；fifths，tenths，hundredths， thousandths；mixed numbers）． a）Develop and analyze strategies for adding and subtracting numbers． b）Estimate sums and differences． c）Judge the reasonableness of solutions．		令	Perform operations with multi－digit whole numbers and with decimals to hundredths． Add，subtract，multiply，and divide decimals to hundredths，using concrete models or drawings and strategies based on place value，properties of operations， and／or the relationship between addition and subtraction； relate the strategy to a written method and explain the reasoning used．	Multiplying and dividing decimals moved from $6^{\text {th }}$ grade NC SCOS． The written method is interpreted as using symbolic notation and writing about the process used to arrive at solutions．Students should also compare symbolic notation to other strategies such as decimal grids．
					Use equivalent fractions as a strategy to add and subtract fractions．	This standard does not specify any limitations to denominators．
					Add and subtract fractions with unlike denominators （including mixed numbers）by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators．For example， $2 / 3+5 / 4=8 / 12+15 / 12=$ 23／12．（In general，$a / b+c / d=(a d+b c) / b d$ ．）	Fractions do not have to be related．For example，2／3＋5／12 is an appropriate problem．
					Use equivalent fractions as a strategy to add and subtract fractions．	
					Solve word problems involving addition and subtraction of fractions referring to the same whole，including cases of unlike denominators，e．g．，by using visual fraction models or equations to represent the problem．Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers．For example，recognize an incorrect result 2／5＋ $1 / 2=3 / 7$ ，by observing that $3 / 7<1 / 2$ ．	

Page 3 of 14

NC SCOS			Common Core			
$\begin{aligned} & \text { 菏 } \\ & \stackrel{y}{6} \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{y y}{z} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}\right.$	Text of objective			Cluster	Comments
					Text of objective	
				¢	Apply and extend previous understandings of multiplication and division to multiply and divide fractions. Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	Multiplying and dividing fractions moved from $6^{\text {th }}$ grade NC SCOS.
				-	Apply and extend previous understandings of multiplication and division to multiply and divide fractions. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.	When students are multiplying and dividing fractions, all fractions should be less than one. Fractions in problems should not be mixed numbers, but solutions may be mixed numbers.

NC SCOS			Common Core			
		Text of objective		$\begin{aligned} & \text { 品 } \\ & \text { 告 } \\ & \text { in } \end{aligned}$	Cluster	Comments
					Text of objective	
					a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=$ 1/3.	A story context for $1 / 3 \div 4=1 / 12$ could be: You have $1 / 3$ of a pound of candy. If you share the candy between yourself and three friends how much candy does each person get?
					b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$.	
					c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?	
	$\underset{\sim}{\underset{\sim}{i}}$	Estimate the measure of an object in one system given the measure of that object in another system.				Moved to $6^{\text {th }}$ grade Common Core
	$\underset{\sim}{\underset{\sim}{i}}$	Identify, estimate, and measure the angles of plane figures using appropriate tools.				Moved to $4^{\text {th }}$ grade Common Core.

Page 8 of 14

NC SCOS			Common Core			
		Text of objective			Cluster	Comments
					Text of objective	
				$\underset{i}{-1}$	Convert like measurement units within a given measurement system. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, real world problems.	Moved from $3^{\text {rd }}$ grade NC SCOS.
					Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Recognize volume as an attribute of solid figures and understand concepts of volume measurement.	Volume of figures moved from $6^{\text {th }}$ grade NC SCOS.
				\sum_{i}^{m}	a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.	The concept of volume is a natural progression of area which students work with in $3^{\text {rd }}$ and $4^{\text {th }}$ grade. These standards should be introduced using concrete manipulatives (cubes) before going to more abstract or symbolic representations.
				$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.	Volume moved from $6^{\text {th }}$ grade NC SCOS.

NC SCOS			Common Core			
	$\stackrel{\square}{0}$	Text of objective			Cluster	Comments
	\|			\%	Text of objective	
				in	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.	Volume moved from $6^{\text {th }}$ grade NC SCOS.
					a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. b. Apply the formulas $V=l \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems.	
					c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the nonoverlapping parts, applying this technique to solve real world problems.	
$\left\lvert\, \begin{gathered} E \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\vec{o}_{\dot{N}}$	Identify, define, describe and accurately represent triangles, quadrilaterals and other polygons.				Moved to $3^{\text {rd }}$ grade Common Core.

Page 10 of 14

NC SCOS			Common Core			
唇					Cluster	
	$\mid \stackrel{\rightharpoonup}{0}$	Text of objective	¢	璧	Text of objective	Comments
	$\underset{\sim}{\text { ơ }}$	Make and test conjectures about polygons involving: a) Sum of the measures of interior angles. b) Lengths of sides and diagonals. c) Parallelism and perpendicularity of sides and diagonals.				Moved to $4^{\text {th }}$ grade Common Core.
	$\underset{\sim}{\mathrm{m}}$	Classify plane figures according to types of symmetry (line, rotational).				Moved to $4^{\text {th }}$ grade Common Core.
	$\underset{\sim}{\mathrm{m}}$	Solve problems involving the properties of triangles, quadrilaterals, and other polygons. a) Sum of the measures of interior angles. b) Lengths of sides and diagonals. c) Parallelism and perpendicularity of sides and diagonals.				Moved to $4^{\text {th }}$ grade Common Core.
			O	¢	Graph points on the coordinate plane to solve realworld and mathematical problems. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).	Coordinate plane moved from $3^{\text {rd }}$ and $4^{\text {th }}$ grade NC SCOS.

Page 11 of 14

Page 12 of 14

NC SCOS			Common Core			
$\begin{aligned} & \text { 荡 } \\ & \text { in } \end{aligned}$		Text of objective			Cluster	Comments
					Text of objective	
				$\stackrel{\text { N }}{\substack{\text { Ni }}}$	Represent and interpret data. Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	This standard integrates fractions, measurement, and data. Students should measure objects to the fractions of a unit, and then create a line plot of the data to solve a problem.
$\left\lvert\, \begin{aligned} & \text { 淢 } \\ & \frac{0}{4} \\ & \hline \end{aligned}\right.$	$\underset{i}{\circ}$	Describe, extend, and generalize numeric and geometric patterns using tables, graphs, words, and symbols.		¢	Analyze patterns and relationships. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	Graphing coordinates from an ordered pair moved from $3^{\text {rd }}$ grade NC SCOS.
	$\begin{aligned} & \text { Io } \\ & \text { is } \end{aligned}$	Use algebraic expressions, patterns, and one-step equations and inequalities to solve problems.			Write and interpret numerical expressions. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	Bracket and braces are new to $5^{\text {th }}$ grade.

Page 13 of 14

NC SCOS			Common Core			
	$\begin{array}{\|l\|l} \hline \stackrel{0}{0} \\ \stackrel{0}{0} \\ \end{array}$				Cluster	
		Text of objective	\bigcirc	枈	Text of objective	ents
				N	Write and interpret numerical expressions. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.	
	$\stackrel{\substack{\text { on } \\ i}}{ }$	Identify, describe, and analyze situations with constant or varying rates of change.				

